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Nonexponential relaxation in fully frustrated models
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and INFM, Sezione di Napoli, 80125 Napoli, Italy
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We study the dynamical properties of the fully frustrated Ising model. Due to the absence of disorder the
model, contrary to spin glass, does not exhibit any Griffiths phase, which has been associated to nonexponen-
tial relaxation dynamics. Nevertheless, we find numerically that the model exhibits a stretched exponential
behavior below a temperatureTp corresponding to the percolation transition of the Kasteleyn-Fortuin clusters.
We have also found that the critical behavior of these clusters for a fully frustratedq-state spin model at the
percolation threshold is strongly affected by frustration. In fact while in the absence of frustration theq51
limit gives random percolation, in the presence of frustration the critical behavior is in the same universality
class of the ferromagneticq51/2-state Potts model.@S1063-651X~97!02110-7#

PACS number~s!: 05.50.1q
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I. INTRODUCTION

Glassy systems at low temperatures undergo a trans
characterized by the freezing of structural relaxation,
which the system is trapped in a disordered metastable
figuration. Already at temperatures higher than the id
glass transition temperatureT0 , a number of dynamic
anomalies are observed. One of these anomalies concern
relaxation functions of the system, which at high tempe
tures are characterized by a single exponential. Below s
temperatureT* higher thanT0 , the long time regime of
correlation functions, calleda relaxation, is well approxi-
mated by a Kohlrausch-Williams-Watts function, also know
as ‘‘stretched exponential,’’

f ~ t !5 f 0 exp2~ t/t!b. ~1!

This behavior has been observed in many real glasses,
as ionic conductors, supercooled liquids, and polymers@1–
7#.

A similar behavior has been observed in canonical me
lic and insulating spin glasses, investigated by neutron
hyperfine techniques@8–13#. These systems can be describ
by an Ising model, in which ferromagnetic and antiferroma
netic interactions are distributed in a disordered way on
edges of the lattice. The Ising spin glass undergoes a tra
tion at some temperatureTSG, called the spin glass trans
tion, analogous to the freezing transition of real glass
Moreover, as in glass-forming systems, one observes a
perature valueT* .TSG where nonexponential relaxatio
functions appear. This has been observed for the Ising
glass in two dimensions~2D! by McMillan @14#, and in 3D
by Ogielski @15#.

Several mechanisms have been proposed to explain
onset of nonexponential relaxation functions like Eq.~1! in
spin glasses, when the system approaches the glass tran
from above. Randeriaet al. @16# suggest that the temperatu
T* coincides withTc , the critical temperature of the ferro
magnetic model. They base their conjecture on the prese
in the spin glass, of nonfrustrated ferromagnetic-type clus
of interactions, the same that are responsible for the Griffi
561063-651X/97/56~5!/4990~8!/$10.00
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singularity @17#. The presence of nonexponential relaxati
in this approach is therefore a direct consequence of
quenched disorder.

On the other hand, it has been suggested@18–20# that in
the spin glass the onset of stretched exponential relaxa
functions may coincide with the percolation temperatureTp
of the Kasteleyn-Fortuin and Coniglio-Klein clusters@21,22#.
These clusters can be obtained by introducing a bond w
probability pB512e22J/kBT between nearest-neighbor pai
of spins satisfying the interaction. In the spin glass the p
colation threshold of these clusters is higher thanTSG @23#.
Moreover Stauffer@24# observes nonexponential relaxatio
in thed52 ferromagnetic Ising model, simulated by conve
tional spin flip, for temperatures lower than the critical tem
peratureTc , which coincides with the percolation temper
tureTp . In d53 this behavior disappears, and the relaxat
is purely exponential for all the temperatures.

To gain more insight into the mechanisms which lead
the appearance of anomalies in the dynamical behavior
this paper we study the fully frustrated Ising model@25–27#
on a bidimensional square lattice, using the conventio
spin flip techniques. In this model ferromagnetic and antif
romagnetic interactions are distributed in a regular way
the lattice ~see Fig. 1!, so that no unfrustrated cluster o
interactions exists. Therefore in this model the appearanc
a stretched exponential in the relaxation functions canno
due to the mechanism of Randeriaet al. We in fact find that
the onset of stretched exponentials occurs at the percola
temperatureTp , as we show in Sec. II.

The fully frustrated Ising model can be mapped onto
fully frustrated q-bond percolation by applying the
Kasteleyn-Fortuin and Coniglio-Klein cluster formalism
whereq52 is the multiplicity of the spins~see Sec. III!. This
model, which can be generalized to any value ofq, is suit-
able to describe systems with geometrical frustration, a
may give insight into the origin of the long relaxation dec
in glasses, characterized by stretched exponentials@28#. We
study the dynamics of this geometrical model forq51 and
q52, using the ‘‘bond flip’’ dynamics that will be describe
in Sec. IV. We find again that the onset of stretched ex
nentials starts at the percolation transitionTp ~Sec. VI!.
4990 © 1997 The American Physical Society
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56 4991NONEXPONENTIAL RELAXATION IN FULLY . . .
Moreover we also find that the percolation transition is in
same universality class as theq/2-state ferromagnetic Pott
model, as we show in Sec. V, in agreement with the exp
tation based on renormalization group@29#.

These results thus suggest that the presence o
percolation-type transition may be responsible for the
pearance of the ‘‘large scale’’ effects of frustration, amo
which there is the onset of various dynamical anomal
such as stretched exponential relaxation functions@30,20#.

In the frustratedq-bond percolation, the frustration i
present at all length scales. To probe the effect of frustra
we have modified the model in such a way that only loops
length 4 are considered frustrated~Sec. VII!. We find that the
model forq51 has the same critical exponents as the fer
magnetic Potts model with spin multiplicityq51 ~the ran-
dom bond percolation model!. Namely, this local frustration
does not change the critical behavior compared with the
frustrated model. At the same time, although the dynamic
the model is influenced by the frustration constraint, in
long time regime the relaxation is purely exponential.

II. THE RELAXATION FUNCTIONS OF THE FULLY
FRUSTRATED ISING SPIN MODEL

We simulate by conventional spin flip the fully frustrate
Ising spin model, defined by the Hamiltonian

H52J(̂
i j &

~e i j SiSj21!, ~2!

wheree i j are quenched variables which assume the va
61. The ferromagnetic and antiferromagnetic interactio
are distributed in a regular way on the lattice~see Fig. 1!.

We calculate the relaxation functions of the energy. A
erages were made over 32 different random number gen
tor seeds, and between 83105 and 1.83106 steps for acqui-
sition were taken, after 104 steps for thermalization, on
system of sizeL564. Here a unit of time is considered to b
one Monte Carlo step, that is,L2 single spin update trials.

FIG. 1. Distribution of interactions for the fully frustrate
model. Straight lines and wavy lines correspond, respectively
e i j 51 ande i j 521.
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In Fig. 2 we show the results fo
T511.0,4.5,2.269,1.701,1.110, where temperatures are
pressed in units ofJ/kB . We observe a two step decay als
for very high temperatures. For all the temperatures exc
T511.0 we fit only the long time tail of the relaxation func
tions. For temperaturesT.Tp51.701 we could fit the long
time regime a pure exponential, that is,b51 within the er-
rors in Eq. ~10!. On the other hand, forT51.110,Tp the
long time behavior is not purely exponential, but can be
ted asymptotically with a stretched exponential. In Fig. 3
show the values ofb(T) in function of T/Tp .

to

FIG. 2. Relaxation functionsf (t) of energy as a function of time
t for the fully frustrated Ising model, with spin flip dynamics, lattic
size L564, for temperatures ~from left to right! T
511.0,4.5,2.269,1.701,1.110.

FIG. 3. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for the fully fr
trated Ising model, with spin flip dynamics, lattice sizeL564.
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4992 56FIERRO, de CANDIA, AND CONIGLIO
III. THE ‘‘ q-BOND FRUSTRATED PERCOLATION’’
MODEL

Using the Kasteleyn-Fortuin@21# and Coniglio-Klein@22#
cluster formalism for frustrated spin Hamiltonians@23#, it is
possible to show that the partition function of the mod
Hamiltonian~2! is given by

Z5(
C

* ebmn~C!qN~C!, ~3!

where q52 is the multiplicity of the spins,b51/kBT,
m5kBT ln(eqbJ21), andn(C) and N(C) are, respectively,
the number of bonds and the number of clusters in the b
configurationC. The summation(C* extends over all the
bond configurations that do not contain a ‘‘frustrated loop
that is, a closed path of bonds which contains an odd num
of antiferromagnetic interactions. Note that there is only o
parameter in the model, namely, the temperatureT, ranging
from 0 to`. The parameterm, which can assume positive o
negative values, plays the role of a chemical potential.

Varying q we obtain an entire class of models differin
by the ‘‘multiplicity’’ of the spins, which we call theq-bond
fully frustrated percolation model. More precisely, for a ge
eral value ofq, the model can be obtained from a Ham
tonian @31#

H52sJ(̂
i j &

@~e i j SiSj11!ds is j
22#, ~4!

in which every site carries two types of spin, namely,
Ising spin and a Potts spins i51,...,s with s5q/2. Forq51
the factorqN(C) disappears from Eq.~3!, and we obtain a
simpler model in which the bonds are randomly distribu
under the conditions that the bond configurations do not c
tain a frustrated loop. Forq→0 we recover the tree percola
tion, in which all loops are forbidden, be they frustrated
not @32#.

When all the interactions are positive~i.e., e i j 51! the
sum in Eq.~3! contains all bond configurations without an
restriction. In this case the partition function coincides w
the partition function of the ferromagneticq-state Potts
model, which in the limitq51 gives the random bond pe
colation.

From renormalization group and numerical results we
pect that the model~3! exhibits two critical points@29,33#,
the first at a temperatureTp(q), corresponding to the perco
lation of the bonds on the lattice, in the same universa
class of the ferromagneticq/2-state Potts model, and th
other at a lower temperatureT0(q), in the same universality
class as the fully frustrated Ising model. In the bidimensio
caseT0(q)50 @25–27#.

IV. MONTE CARLO DYNAMICS

A particular configuration of the model defined by Eq.~3!
is determined by the state of each edge between two nea
neighbor sites, that can be empty or occupied by a bond.
dynamics of the model is carried out in the following wa
~i! choose at random a particular edge on the lattice;~ii !
calculate the probabilityP of changing its state, that is, o
creating a bond if the edge is empty, and of destroying
l

d

’
er
e

-

d
n-

r

-

y

l

st-
he

e

bond if the edge is occupied;~iii ! change the state of th
edge with probabilityP.

The point~ii ! needs the knowledge of a nonlocal proper
namely, if a bond placed on the chosen edge closes a loo
not, and if the loop is frustrated or not. This is accomplish
in the following way: starting from the two sites at the e
tremes of the edge, visit the clusters of sites connecte
them by a continuous path of bonds; if the clusters coll
the bond closes a loop, otherwise it does not. By keep
track of the number of antiferromagnetic bonds traversed
iting the cluster, one can determine also if the loop is fru
trated or not.

Note that at high temperatures clusters are small, and
visited in a few iterations, while at low temperatures dens
of bonds is high, and the clusters collide in a few iteratio
as well. On the other hand, at the percolation transition c
ters are very ramified, and one often must visit a large nu
ber of sites before the iteration is over. This makes the al
rithm CPU consuming at the percolation transition, a
prevents the simulation of very large systems.

From Eq.~3!, the statistical weight of a bond configura
tion C is given byW(C)5ebmn(C)qN(C) if C does not con-
tain a frustrated loop, andW(C)50 if it does. Thus the
transition probabilities for the principle of detailed balan
must satisfy

P~C→C8!5P~C8→C!ebmdnqdN, ~5!

where dn5n(C8)2n(C) and dN5N(C8)2N(C). Note
that from Euler’s equation dN5dk2dn, where
dk5k(C8)2k(C), and k(C) is the number of loops in
configurationC, we can calculatedN knowing dn and dk.
One can easily see that a possible choice for the trans
probability P(C→C8) is given by

P~C→C8!5H min~1,ebmdnqdN! if C8 is not frustrated

0 if C8 is frustrated.
~6!

The procedure described above in the points~i!–~iii ! is
called a ‘‘single update trial.’’ A Monte Carlo step consis
in G single update trials, whereG is the total number of edge
on the lattice, namely, on the square bidimensional latt
G52L2. In Secs. VI and VII, when we plot relaxation func
tions of the fully frustrated and locally frustrated bond pe
colation model, a unity of time is considered to beG^r&21

single update trials, or̂r&21 Monte Carlo steps, wherêr& is
the average density of bonds, ranging in the interval~0,1!.

V. STATIC PROPERTIES

In this section we analyze the percolation properties of
model defined by Eq.~3!, for q51 andq52, on a bidimen-
sional square lattice, with fully frustrated interactions. W
have used the histogram method for analyzing data@34#. For
each value ofq, we have simulated the model for lattic
sizes L532,48,64. For each size we have considered
temperatures around the percolation point, taking 104 steps
for thermalization and between 33105 and 83105 steps for
acquisition of histograms. At every step we evaluate the
lowing quantities: density of bondsr; existence of a span
ning clusterP` ; mean cluster sizex.
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The quantityP` assumes the value 1 if the bond configu
ration percolates, and 0 if it does not. The mean cluster si
is defined as@35#

x5
1

N (
s

s2ns , ~7!

where ns is the number of clusters having sizes on the
lattice, andN5L2 is the number of sites. The histogram
method allows us to evaluate the thermal averages of the
quantities over an entire interval of temperature. The avera
of the quantityP` is the probability of occurrence of a span-
ning cluster.

FIG. 4. Finite size scaling of~a! P`(T) and ~b! x(T), for the
q51 model, and for lattice sizesL532,48,64. Curves are indistin-
guishable in this plot.
ze

se
ge

Around the percolation temperature, the averaged quan
ties P`(T) andx(T), for different values of the lattice size
L, should obey the finite size scaling@36#

P`~T!5F`@L1/n~T2Tp!#, ~8a!

x~T!5Lg/nFx@L1/n~T2Tp!#, ~8b!

whereg andn are critical exponents of mean cluster size an
connectivity length, andF` andFx are universal functions.
Thus we can fit the values ofn, g, andTp so that plotting
P`(T) and L2g/nx(T) as a function ofL1/n(T2Tp), the
functions corresponding to different values ofL collapse,
respectively, on the universal master curvesy5F`@x# and

FIG. 5. Finite size scaling of~a! P`(T) and ~b! x(T), for the
q52 model, and for lattice sizesL532,48,64. Curves are indistin-
guishable in this plot.
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4994 56FIERRO, de CANDIA, AND CONIGLIO
y5Fx@x#. Figures 4 and 5 show the data collapse obtain
for theq51 andq52 models, for lattice sizesL532,48,64.

The values of the critical exponents extracted from the
coincide, within the errors, with those of the ferromagne
Potts model with spin multiplicityq/2 @32#. Results are sum
marized in Table I, while in Table II we report the critica
exponents and transition temperature of the ferromagn
Potts model.

VI. THE RELAXATION FUNCTIONS OF THE ‘‘ q-BOND
FRUSTRATED PERCOLATION’’ MODEL

In this section we analyze the dynamical behavior of
model defined by Eq.~3!, simulated by the algorithm de
scribed in Sec. IV. For each temperatureT and value ofq,
32 different runs were made, varying the random num
generator seed, on a system of sizeL564. We took between
103 and 104 steps for thermalization, and between 105 and
106 steps for acquisition, calculating at each step the den
of bonds r(t). The relaxation function of the density o
bonds is defined as

f ~ t !5
^dr~ t !dr~0!&

^~dr!2&
, ~9!

where dr(t)5r(t)2^r&. For each value ofT and q, we
averaged the 32 functions calculated, and evaluated the
as a standard deviation of the mean. As we mentioned in
IV, we consider a unit of time to consist ofG^r&21 single
update trials, whereG52L2 is the number of edges on th
lattice.

In Fig. 6 the results forq51, T51.440,1.067,0.801,0.62
are shown. Note thatTp51.067 corresponds to the percol
tion transition of the model. ForT.Tp we fitted the calcu-
lated points with the function

f ~ t !5 f 0 exp@2~ t/t!b#. ~10!

The value ofb extracted from the fit is equal to one withi
the error. Thus forT>Tp the relaxation is purely exponen

TABLE I. Critical exponents 1/n andg, and percolation transi-
tion temperatureTp of the fully frustratedq-bond percolation mode
with q51, 2, and of the locally frustrated bond percolation mod
with l054.

Model 1/n g Tp

q51 0.5660.02 3.2260.07 1.06760.001
q52 0.7560.03 2.3460.06 1.70160.001
Local (l054) 0.7560.03 2.3360.04 1.27760.001

TABLE II. Critical exponents 1/n and g, and critical tempera-
tureTc of the ferromagnetic Potts model, with multiplicity of spin
q51/2, 1, 2.

Model 1/n g Tc

q51/2 0.56 3.27 1.233
q51 0.75 2.39 1.443
q52 1 1.75 2.269
d

t

tic

e

r

ty

ror
c.

tial. For T,Tp , we observe a two step decay, and only th
long time regime of the relaxation functions could be fitte
by Eq.~10!. The value ofb extracted is less than one, show
ing that stretched exponential relaxation has appeared
these temperatures. In Fig. 7 the values ofb(T) as a function
of the the ratioT/Tp are shown, with least squares estimatio
errors.

In Fig. 8 the results forq52, T52.269,1.701,1.440,1.110
are shown. TemperatureTp51.701 corresponds to the per
colation transition. The fits were made in the same way d
scribed forq51, and the values ofb(T) extracted are shown
in Fig. 9. Also in this caseb51 within the error forT>Tp ,
and b,1 for T,Tp . Note that theq52 fully frustrated

l

FIG. 6. Relaxation functionsf (t) of bond density as a function
of time t for q51, lattice sizeL564, for temperatures~from left to
right! T51.440,1.067,0.801,0.625.

FIG. 7. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for theq51 fully
frustrated bond percolation model, lattice sizeL564.
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56 4995NONEXPONENTIAL RELAXATION IN FULLY . . .
bond percolation model can be mapped exactly onto the f
frustrated Ising spin model, as we showed in Sec. III. So i
interesting to compare the relaxation functions of this mo
to those of the corresponding fully frustrated Ising mod
simulated by standard spin flip techniques.

VII. THE LOCALLY FRUSTRATED BOND PERCOLATION

In the fully frustratedq-bond percolation model, the con
figurations of bonds which contain at least one frustra
loop have zero weight. The size of frustrated loops has
upper limit. To study systematically the effect of frustratio
we consider now a modified version of the model, in whi

FIG. 8. Relaxation functionsf (t) of bond density as a function
of time t for q52, lattice sizeL564, for temperatures~from left to
right! T52.269,1.701,1.440,1.110.

FIG. 9. Stretching exponentsb(T) as a function ofT/Tp , the
ratio of temperature over percolation temperature, for theq52 fully
frustrated bond percolation model, lattice sizeL564.
ly
s
l

l,

d
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only loops up to some specified length are considered fru
trated, while longer ones are permitted. The partition func
tion of this model is given by

Z5(
C

~l0!ebmn~C!. ~11!

Here the parametersb and m have the same meaning as in
Eq. ~3!, n(C) is the number of bonds in the configurationC,
and the sum(C

(l0) is extended over the bond configurations
that do not contain frustrated loops of lengthl<l0 . Thus
the model switches continuously from the random bond pe
colation (l050), and theq-bond frustrated percolation with
q51 (l05`).

FIG. 10. Finite size scaling of~a! P`(T) and ~b! x(T), for the
local frustrated model, and for lattice sizesL532,48,64. Curves are
indistinguishable in this plot.
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4996 56FIERRO, de CANDIA, AND CONIGLIO
We have studied the critical properties of the model,
l054, and its dynamical behavior above and below the p
colation transition. The critical exponents extracted from
finite size scaling data collapse~see Fig. 10! coincide within
the errors with those of the random bond percolation,
shown in Table I. The percolation temperature isTp51.277,
intermediate between that of the random bond percolat
Tp51.443, and that of theq51-bond frustrated percolation
Tp51.067.

The dynamics, on the other hand, is affected by the lo
constraint constituted by the frustration, as the autocorr
tion functions do not decay as a single exponential when
temperature is lowered below the percolation thresho
However, the long time regime of the relaxation functio
could be fitted with an exponential for all the temperatu
considered.

In Fig. 11 we show the bond density autocorrelation fun
tions, evaluated on a latticeL564, for temperatures
T51.277,0.911,0.625. The function calculated forT51.701
is not shown because it overlaps with the function calcula

FIG. 11. Relaxation functionsf (t) of bond density as a function
of time t for the local frustrated model, lattice sizeL564, for
temperatures~from left to right! T51.277,0.911,0.625.
-

r
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e
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al
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e
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for T51.277. Solid curves show fits made by a pure exp
nential. Averages were taken over 32 different runs, each
taking 104 steps for thermalization, and between 23105 and
33105 steps for acquisition.

VIII. CONCLUSIONS

We have studied the fully frustrated Ising model and t
fully frustrated percolation model. The dynamics of the mo
els was analyzed in detail, in connection with the problem
the onset of stretched exponentials in frustrated systems,
glasses and spin glasses.

Due to absence of disorder in these models, the argum
suggested by Randeriaet al., which predict a nonexponentia
relaxation below the critical temperatureTc of the corre-
sponding ferromagnetic model, do not apply. In fact our
sults show no sign of complex dynamical behavior atTc .
We find instead an exponential relaxation above the perc
tion temperatureT>Tp , while for T,Tp the long time tail
of the relaxation functions can be fitted with a stretched
ponential. So we conclude that at least in the models with
disorder the appearance of complex dynamics is related
percolation transition. In systems like spin glassesTp andTc
are very close, and it is difficult to distinguish numerical
where the onset of nonexponential relaxation occurs.

We also find that frustration plays an important role in t
critical properties at the percolation thresholdTp . For ex-
ample, forq51 the critical behavior is in the same unive
sality as the ferromagneticq51/2-state Potts model, contrar
to the unfrustrated case, which corresponds to random b
percolation and is in the same universality class as theq51
ferromagnetic Potts model.

We have also considered a model, the locally frustra
bond percolation, in which only loops up to length 4 a
considered frustrated. The model shows the same crit
properties as the random bond percolation, showing that
frustration is ‘‘too local’’ to change the universality clas
Similarly, the relaxation functions in the long time regim
can always be fitted with an exponential, showing that
frustration constraint is not enough to give rise to stretch
exponential relaxation. More careful study of this mod
possibly varying the ‘‘range’’ of the frustration between th
size of the singleplaquette, and that of the whole system
may shed more light on the role played by the frustration
the dynamics of complex systems.
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