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We study the dynamical properties of the fully frustrated Ising model. Due to the absence of disorder the
model, contrary to spin glass, does not exhibit any Griffiths phase, which has been associated to nonexponen-
tial relaxation dynamics. Nevertheless, we find numerically that the model exhibits a stretched exponential
behavior below a temperatuflg, corresponding to the percolation transition of the Kasteleyn-Fortuin clusters.
We have also found that the critical behavior of these clusters for a fully frustogastate spin model at the
percolation threshold is strongly affected by frustration. In fact while in the absence of frustratigs-the
limit gives random percolation, in the presence of frustration the critical behavior is in the same universality
class of the ferromagnetig= 1/2-state Potts modelS1063-651X%97)02110-7

PACS numbeps): 05.50+q

[. INTRODUCTION singularity[17]. The presence of nonexponential relaxation
in this approach is therefore a direct consequence of the
Glassy systems at low temperatures undergo a transitioguenched disorder.

characterized by the freezing of structural relaxation, in On the other hand, it has been sugge$tg}-2Q that in
which the system is trapped in a disordered metastable coithe spin glass the onset of stretched exponential relaxation
figuration. Already at temperatures higher than the ideafunctions may coincide with the percolation temperatiige
glass transition temperatur@,, a number of dynamic of the Kasteleyn-Fortuin and Coniglio-Klein clust¢®i,22.
anomalies are observed. One of these anomalies concerns tfhieese clusters can be obtained by introducing a bond with
relaxation functions of the system, which at high temperaprobability pg=1—e~2"*eT between nearest-neighbor pairs
tures are characterized by a single exponential. Below somef spins satisfying the interaction. In the spin glass the per-
temperatureT* higher thanT,, the long time regime of colation threshold of these clusters is higher tfag [23].
correlation functions, called relaxation, is well approxi- Moreover Stauffe[24] observes nonexponential relaxation
mated by a Kohlrausch-Williams-Watts function, also knownin thed=2 ferromagnetic Ising model, simulated by conven-

as “stretched exponential,” tional spin flip, for temperatures lower than the critical tem-
peratureT., which coincides with the percolation tempera-
f(t)="fq exp—(t/7)~. (1)  tureT,. Ind=3 this behavior disappears, and the relaxation

is purely exponential for all the temperatures.

This behavior has been observed in many real glasses, such To gain more insight into the mechanisms which lead to
as ionic conductors, supercooled liquids, and polyniges  the appearance of anomalies in the dynamical behavior, in
7]. this paper we study the fully frustrated Ising mo{i2b—27

A similar behavior has been observed in canonical metalon a bidimensional square lattice, using the conventional
lic and insulating spin glasses, investigated by neutron andpin flip techniques. In this model ferromagnetic and antifer-
hyperfine techniquds8—13]. These systems can be describedromagnetic interactions are distributed in a regular way on
by an Ising model, in which ferromagnetic and antiferromag-the lattice (see Fig. ], so that no unfrustrated cluster of
netic interactions are distributed in a disordered way on thénteractions exists. Therefore in this model the appearance of
edges of the lattice. The Ising spin glass undergoes a transi stretched exponential in the relaxation functions cannot be
tion at some temperaturBsg, called the spin glass transi- due to the mechanism of Randeéhal. We in fact find that
tion, analogous to the freezing transition of real glassesthe onset of stretched exponentials occurs at the percolation
Moreover, as in glass-forming systems, one observes a tentemperaturel,, as we show in Sec. II.
perature valueT* >Tgg where nonexponential relaxation  The fully frustrated Ising model can be mapped onto a
functions appear. This has been observed for the Ising spifully frustrated g-bond percolation by applying the
glass in two dimension&@D) by McMillan [14], and in 3D  Kasteleyn-Fortuin and Coniglio-Klein cluster formalism,
by Ogielski[15]. whereq= 2 is the multiplicity of the spingésee Sec. I). This

Several mechanisms have been proposed to explain theodel, which can be generalized to any valugypfis suit-
onset of nonexponential relaxation functions like EL.in able to describe systems with geometrical frustration, and
spin glasses, when the system approaches the glass transitimay give insight into the origin of the long relaxation decay
from above. Randeriat al.[16] suggest that the temperature in glasses, characterized by stretched exponerj@a&s We
T* coincides withT., the critical temperature of the ferro- study the dynamics of this geometrical model &p+1 and
magnetic model. They base their conjecture on the presencg=2, using the “bond flip” dynamics that will be described
in the spin glass, of nonfrustrated ferromagnetic-type clusteri Sec. IV. We find again that the onset of stretched expo-
of interactions, the same that are responsible for the Griffithgentials starts at the percolation transitidp (Sec. V).
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FIG. 1. Distribution of interactions for the fully frustrated 10 —1
model. Straight lines and wavy lines correspond, respectively, to
€ij=1 andEij:_l.

FIG. 2. Relaxation function§(t) of energy as a function of time
Moreover we also find that the percolation transition is in thet for the fully frustrated Ising model, with spin flip dynamics, lattice
same universality class as tly2-state ferromagnetic Potts size L=64, for temperatures (from left to right T
model, as we show in Sec. V, in agreement with the expec=11.0,4.5,2.269,1.701,1.110.
tation based on renormalization grol29].
These results thus suggest that the presence of a

; e . In Fig. 2 we show the results for
percolation-type transition may be responsible for the aPT_1104522691.701.1.110 where temperatures are ex-
pearance of the “large scale” effects of frustration, among B A

which there is the onset of various dynamical anomaliespressed in units od/kg . We observe a two step decay also

such as stretched exponential relaxation functi@@s20), foi very hlgh_ temperatures. For aII_ the temperatulres except
. - . T=11.0 we fit only the long time tail of the relaxation func-
In the frustratedq-bond percolation, the frustration is

present at all length scales. To probe the effect of frustratiortllons' For temperatureb>T,=1.701 we could fit the long

we have modified the model in such a way that only loops of?(?:se ir:%imtila(l))plgi ?ﬁgo;igtriarll,atnh;t f%_':._l 1W1iT(iQ :[rhetﬁg
length 4 are considered frustrategkec. VII). We find that the g ' ' - p

model forq=1 has the same critical exponents as the ferro-Iong fime behavior is not purely exponential, but can be fit-

magnetic Potts model with spin multiplicity=1 (the ran- tehd as>;]mptolt|cally W'EP gs:retched efx_lp_)/o_lpenual. In Fig. 3 we
dom bond percolation modelNamely, this local frustration show the values oB(T) in function o p

does not change the critical behavior compared with the un-
frustrated model. At the same time, although the dynamics ol
the model is influenced by the frustration constraint, in the =
long time regime the relaxation is purely exponential. &

II. THE RELAXATION FUNCTIONS OF THE FULLY
FRUSTRATED ISING SPIN MODEL [
We simulate by conventional spin flip the fully frustrated 0.75 1
Ising spin model, defined by the Hamiltonian I
0.5} *
H=—J<Z> (6;SS-1), )
ij

where €;; are quenched variables which assume the values 0.25

+1. The ferromagnetic and antiferromagnetic interactions -

are distributed in a regular way on the latticee Fig. 1 L
We calculate the relaxation functions of the energy. Av- 0 0 S 2 E— 4 — 6

erages were made over 32 different random number generz T/T

tor seeds, and betweerx80° and 1.8< 10° steps for acqui- g

sition were taken, after fOsteps for thermalization, on a FIG. 3. Stretching exponeni8(T) as a function off/T,, the

system of size&. = 64. Here a unit of time is considered to be ratio of temperature over percolation temperature, for the fully frus-

one Monte Carlo step, that i&? single spin update trials.  trated Ising model, with spin flip dynamics, lattice size 64.
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ll. THE * g-BOND FRUSTRATED PERCOLATION" bond if the edge is occupiediii) change the state of the
MODEL edge with probabilityP.

Using th Kasteleyn Foruf) and Congio Kiez2) 11 PO neece i it of A nonioen povery.
cluster formalism for frustrated spin Hamiltoniaf&3], it is '

possible to show that the partition function of the model.nOt’ and if thg loop is frust_rated or not. This i§ accomplished
Hamiltonian(2) is given by in the following way: starting from the two sites at the ex-

tremes of the edge, visit the clusters of sites connected to

them by a continuous path of bonds; if the clusters collide

Z=, *eBun(CgN(©C), (3)  the bond closes a loop, otherwise it does not. By keeping

¢ track of the number of antiferromagnetic bonds traversed vis-

where q=2 is the multiplicity of the spins,8=1/kgT iting the cluster, one can determine also if the loop is frus-

; trated or not.
w=KkgT In(e®—1), andn(C) and N(C) are, respectively, .
the number of bonds and the number of clusters in the bongisz?géﬁr:hﬁgf’ ri]tlgr:\tti?)r:spevrvar?i?e:e;[ (I:(I)l\JNStteri aerreaft?r]il, dae%ii?re
configurationC. The summation=% extends over all the ! P Y

bond confiqurations that do not contain a “frustrated loop” of bonds is high, and the clusters collide in a few iterations
. 9 ) . P. " as well. On the other hand, at the percolation transition clus-
that is, a closed path of bonds which contains an odd numb

: _ . ) $ers are very ramified, and one often must visit a large num-
of antiferromagnetic interactions. Note that there is only ON& o of sites before the iteration is over. This makes the algo-
parameter in the model, namely, the temperaiureanging X

f 0 too. Th " hich i rithm CPU consuming at the percolation transition, and

rgm i : .I € pallram?hiﬂ,ovlv 'Cf Caﬂ as_surlne [ios![_lvle or prevents the simulation of very large systems.

n g/y\;inz:]/?quv?/z gb?:};/\isn an ren?irZ Sacssecr;“?:ogglsr:jilf?éring From Eq.(3), the statistical weight of a bond configura-
i is ai = eBun(C)oN(C) j -

by the “multiplicity” of the spins, which we call thei-bond  Lon C IS given byW(C)=e ¥ =g if C does not con

fully frustrated percolation model. More precisely, for a en—tain a frustrated loop, anW/(C)=0 if it does. Thus the
Y P ' P Y, 9eN- . ansition probabilities for the principle of detailed balance
eral value ofqg, the model can be obtained from a Hamil-

tonian[31] must satisfy
P(C—)C’):P(Crﬁc)eﬁﬂgnqu, (5)

H= SJOEN [(€1SS+1) 850, 2], @ \Where sn=n(C")-n(C) and SN=N(C')—~N(C). Note

that from Euler's equation SN=46k—6n, where
in which every site carries two types of spin, namely, ansx=k(C')—«(C), and x(C) is the number of loops in

Ising spin and a Potts spin =1,... s with s=q/2. Forq=1  configurationC, we can calculateSN knowing sn and k.

the factorg™(© disappears from Eq(3), and we obtain a One can easily see that a possible choice for the transition
simpler model in which the bonds are randomly distributedprobability P(C—C’) is given by

under the conditions that the bond configurations do not con-

tain a frustrated loop. Fag— 0 we recover the tree percola- . [min(1,ef#"g’) if C' is not frustrated
tion, in which all loops are forbidden, be they frustrated or P(C—C')= 0 if C' is frustrated.

When all the interactions are positiVee., €;=1) the
sum in Eq.(3) contains all bond configurations without any ~ The procedure described above in the poijsiii) is
restriction. In this case the partition function coincides withcalled a “single update trial.” A Monte Carlo step consists
the partition function of the ferromagnetig-state Potts in G single update trials, wheis the total number of edges
model, which in the limitq=1 gives the random bond per- on the lattice, namely, on the square bidimensional lattice,
colation. G=2L2. In Secs. VI and VII, when we plot relaxation func-

From renormalization group and numerical results we extions of the fully frustrated and locally frustrated bond per-
pect that the mode(3) exhibits two critical point§29,33, colation model, a unity of time is considered to &) !
the first at a temperatufg,(q), corresponding to the perco- single update trials, dip) ! Monte Carlo steps, whek) is
lation of the bonds on the lattice, in the same universalitythe average density of bonds, ranging in the intefQal).
class of the ferromagnetiq/2-state Potts model, and the

other at a lower temperatuiig(q), in the same universality V. STATIC PROPERTIES
class as the fully frustrated Ising model. In the bidimensional ) ) ) ]
caseT,(q) =0 [25-27. In this section we analyze the percolation properties of the

model defined by Eq.3), for g=1 andq=2, on a bhidimen-
sional square lattice, with fully frustrated interactions. We
have used the histogram method for analyzing @344 For

A particular configuration of the model defined by Eg.  each value ofq, we have simulated the model for lattice
is determined by the state of each edge between two nearesizes L =32,48,64. For each size we have considered ten
neighbor sites, that can be empty or occupied by a bond. Themperatures around the percolation point, taking dt@ps
dynamics of the model is carried out in the following way: for thermalization and betweernx3L0® and 8x 10° steps for
(i) choose at random a particular edge on the lattige¢; acquisition of histograms. At every step we evaluate the fol-
calculate the probabilitf? of changing its state, that is, of lowing quantities: density of bonds, existence of a span-
creating a bond if the edge is empty, and of destroying theing clusterP., ; mean cluster sizg.

IV. MONTE CARLO DYNAMICS
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FIG. 4. Finite size scaling ofa) P..(T) and(b) x(T), for the FIG. 5. Finite size scaling ofa) P..(T) and (b) x(T), for the
g=1 model, and for lattice sizds=32,48,64. Curves are indistin- 9=2 model, and for lattice sizés=32,48,64. Curves are indistin-
guishable in this plot. guishable in this plot.

The quantityP., assumes the value 1 if the bond configu- Around the percolation_temperature, the averag.ed qganti-
ration percolates, and 0 if it does not. The mean cluster sizH€S P=(T) andx(T), for different values of the lattice size

is defined a$35] L, should obey the finite size scaling6]
L P.(T)=F.[LY(T-Ty], (8a)
=— sng, 7
NS " X(T)=L"F, [L(T-Tp)], (8b)

where ng is the number of clusters having sizeon the  whereyandv are critical exponents of mean cluster size and
lattice, andA’=L? is the number of sites. The histogram connectivity length, andr.. and F, are universal functions.
method allows us to evaluate the thermal averages of thesghus we can fit the values of, y, and T, so that plotting
quantities over an entire interval of temperature. The average..(T) and L™ "”x(T) as a function ofL”V(T—Tp), the

of the quantityP., is the probability of occurrence of a span- functions corresponding to different values lof collapse,
ning cluster. respectively, on the universal master curyesF.[x] and
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TABLE I. Critical exponents I/ and vy, and percolation transi- 1
tion temperaturd , of the fully frustratedy-bond percolation model
with g=1, 2, and of the locally frustrated bond percolation model
with A g=4.

f(t)

Model 1l y T,

gq=1 0.56+0.02 3.22-0.07 1.0670.001 10 F
q=2 0.75:0.03 2.34-0.06 1.70x0.001 F
Local (\g=4) 0.75:0.03 2.33:0.04 1.277#0.001

y=F,[x]. Figures 4 and 5 show the data collapse obtained .,

for theq=1 andgq=2 models, for lattice sizels=32,48,64. 10 F
The values of the critical exponents extracted from the fit

coincide, within the errors, with those of the ferromagnetic

Potts model with spin multiplicity/2 [32]. Results are sum-

marized in Table I, while in Table Il we report the critical

exponents and transition temperature of the ferromagnetic = —3

Potts model. 10 iy

VI. THE RELAXATION FUNCTIONS OF THE “ q-BOND
FRUSTRATED PERCOLATION” MODEL FIG. 6. Relaxation function§(t) of bond density as a function

. . . . of timet for q=1, lattice sizeL =64, for temperature@rom left to
In this section we analyze the dynamical behavior of theright) T=1.4401.067.0.801.0.625.

model defined by Eq(3), simulated by the algorithm de-
35 iferont rne were made, vanying the random numbefd FOTT<Ty. we observe a two step decay, and only he
generator seed, on a system of dize64. We took between ong time regime of the relaxation functions could be fitted
10° and 10 steps for thermalization, and betweer? Ehd by Eqg.(10). The value ofg extracted is less than one, show-

10° steps for acquisition, calculating at each step the densi hg th?tr;trertctherd ernpg?en;l?rll r(\a-/IeTxatlor; has af%e?irer:j for
of bonds p(t). The relaxation function of the density of ese temperatures. 9- € alueg(T) as a fu ction
bonds is defined as of the the ratiol /T, are shown, with least squares estimation

errors.
(8p(t)5p(0)) In Fig. 8 the results fog=2, T=2.269,1.701,1.440,1.110
f(t)= GpD 9 are shown. Temperaturg,=1.701 corresponds to the per-

colation transition. The fits were made in the same way de-

scribed forg=1, and the values @8(T) extracted are shown

where 8p(t)=p(t) —(p). For each value off andq, we >~ oo Y
/ Fig. 9. Also in this casg=1 within the error forT=T,
averaged the 32 functions calculated, and evaluated the errg}nd B<1 for T<T,. Note that theq=2 fully frustrated

as a standard deviation of the mean. As we mentioned in Sef'
IV, we consider a unit of time to consist 6k p) ! single

update trials, wherg=2L? is the number of edges on the =
lattice. R i
In Fig. 6 the results fog=1, T=1.440,1.067,0.801,0.625 1
are shown. Note thal,=1.067 corresponds to the percola- [ f
tion transition of the model. Fof>T, we fitted the calcu- -
lated points with the function 0.75
f(t)="f, exg — (t/7)"]. (10 I *

The value ofg extracted from the fit is equal to one within 0.5
the error. Thus foiT =T, the relaxation is purely exponen-

TABLE II. Critical exponents I# and y, and critical tempera- 0.25
ture T, of the ferromagnetic Potts model, with multiplicity of spins

q=1/2, 1, 2. -
O_IIIIIIII\IIIIIIIIII
Model 1l y Te 0 0.5 1 1.5 2
T/T,
gq=1/2 0.56 3.27 1.233
q=1 0.75 2.39 1.443 FIG. 7. Stretching exponeni8(T) as a function ofT/T,, the
g=2 1 1.75 2.269 ratio of temperature over percolation temperature, fogthd. fully

frustrated bond percolation model, lattice size 64.
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right) T=2.269,1.701,1.440,1.110. ~
{X 0.08 -
-~ L
bond percolation model can be mapped exactly onto the full ', -
frustrated Ising spin model, as we showed in Sec. Ill. Soitic ~ 0.07 ¢
interesting to compare the relaxation functions of this mode ¥
to those of the corresponding fully frustrated Ising model, 0.06 .
simulated by standard spin flip techniques. N
0.05 ¢
VII. THE LOCALLY FRUSTRATED BOND PERCOLATION 0.04
In the fully frustratedg-bond percolation model, the con- 0.03 i
figurations of bonds which contain at least one frustratec ’ N
loop have zero weight. The size of frustrated loops has ni 0.02 L
upper limit. To study systematically the effect of frustration, ’ C
we consider now a modified version of the model, in which 0.01 :
e O:...‘l...‘\..‘.\,H.l....l....l....l....
= i -3 -2 -1 0 1 2 3 4 5
1/v
1 - | . ) L (T—TC)
i FIG. 10. Finite size scaling ai) P..(T) and(b) x(T), for the
0.75 local frustrated model, and for lattice sides- 32,48,64. Curves are
i | indistinguishable in this plot.
0.5 i only loops up to some specified length are considered frus-
~ trated, while longer ones are permitted. The partition func-
i tion of this model is given by
0.25 Z=>, (MogBun(C) (11)
— C
ol ! ! I Here the parameterg and i have the same meaning as in

1 15 2
T,

FIG. 9. Stretching exponeni8(T) as a function ofT/T,, the
ratio of temperature over percolation temperature, fogthe fully
frustrated bond percolation model, lattice size 64.

Eq. (3), n(C) is the number of bonds in the configuratiGn

and the surTE(C”f’) is extended over the bond configurations
that do not contain frustrated loops of lengtks\y. Thus

the model switches continuously from the random bond per-
colation (\y=0), and theg-bond frustrated percolation with
q=1 (\g=°).
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for T=1.277. Solid curves show fits made by a pure expo-
nential. Averages were taken over 32 different runs, each one
taking 1¢ steps for thermalization, and betweek 20° and

3x 10° steps for acquisition.

VIIl. CONCLUSIONS

We have studied the fully frustrated Ising model and the
fully frustrated percolation model. The dynamics of the mod-
els was analyzed in detail, in connection with the problem of
the onset of stretched exponentials in frustrated systems, like
glasses and spin glasses.

Due to absence of disorder in these models, the arguments
suggested by Randeré al.,, which predict a nonexponential
relaxation below the critical temperatufie, of the corre-
sponding ferromagnetic model, do not apply. In fact our re-
sults show no sign of complex dynamical behaviorTat
H We find instead an exponential relaxation above the percola-

10—4 L i tion temperaturd =T, while for T<T, the long time tail
1 0—1 1 t of the relaxation functions can be fitted with a stretched ex-
ponential. So we conclude that at least in the models without

FIG. 11. Relaxation functioni(t) of bond density as a function disorder the appearance of complex dynamics is related to a
of time t for the local frustrated model, lattice side=64, for  percolation transition. In systems like spin glas$gsndT,
temperaturegfrom left to right T=1.277,0.911,0.625. are very close, and it is difficult to distinguish numerically

where the onset of nonexponential relaxation occurs.

We have studied the critical properties of the model, for We also find that frustration plays an important role in the
Ao=4, and its dynamical behavior above and below the pereritical properties at the percolation threshdlg. For ex-
colation transition. The critical exponents extracted from theample, forq=1 the critical behavior is in the same univer-
finite size scaling data collapgsee Fig. 1Dcoincide within  sality as the ferromagnetig= 1/2-state Potts model, contrary
the errors with those of the random bond percolation, aso the unfrustrated case, which corresponds to random bond
shown in Table I. The percolation temperaturd js=1.277,  percolation and is in the same universality class agjthd
intermediate between that of the random bond percolatiorferromagnetic Potts model.

Tp,=1.443, and that of thg=1-bond frustrated percolation, We have also considered a model, the locally frustrated
T,=1.067. bond percolation, in which only loops up to length 4 are

The dynamics, on the other hand, is affected by the locatonsidered frustrated. The model shows the same critical
constraint constituted by the frustration, as the autocorrelaproperties as the random bond percolation, showing that the
tion functions do not decay as a single exponential when thé&ustration is “too local” to change the universality class.
temperature is lowered below the percolation thresholdSimilarly, the relaxation functions in the long time regime
However, the long time regime of the relaxation functionscan always be fitted with an exponential, showing that the
could be fitted with an exponential for all the temperaturedfrustration constraint is not enough to give rise to stretched
considered. exponential relaxation. More careful study of this model,

In Fig. 11 we show the bond density autocorrelation func-possibly varying the “range” of the frustration between the
tions, evaluated on a latticee =64, for temperatures size of the singleplaquette and that of the whole system,
T=1.277,0.911,0.625. The function calculated Ter 1.701  may shed more light on the role played by the frustration in
is not shown because it overlaps with the function calculatedhe dynamics of complex systems.
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